Supplementary Material

Figure S1. G distribution on the IM_631 dataset.

Feature	Description
Residue ID	The one-hot encode of the (1) mutant amino-acid (2) for the following, (3)
	the previous position in the sequence and the (4) wild type residue.
Neighbor residues	The frequency of the residues within a 5 Angstrom radius from the mutant
-	amino-acid. Therefore, a vector store the number of observations for each of
	the 20 possible residues in this sphere.
Secondary structure	The one-hot encode of the secondary structure for the (1) mutant residue, (2)
	for the following, and (3) the previous position in the sequence. Secondary
	structure can be classified as <i>alpha</i> , <i>beta</i> or <i>coil</i> .
Solvent Accessibility	The Solvent Accessibility calculated by DSSP for the (1) mutant residue, (2)
	for the following, and (3) the previous position in the sequence.
Conservation	The conservation for the (1) mutant residue, (2) for the following, and (3) the
	previous position in the sequence. It is calculated using PSI-BLAST on the UniRef90 database.
Mutual information	The mutual information for the (1) mutant residue, (2) for the two following,
	and (3) the two previous position in the sequence. This is measure of mutual
	dependence of two variables X and Y. It is defined as follows:
	$MI(X Y) = \sum \sum p(x y) \log \frac{p(x,y)}{y}$
	$MI(X,Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$
Average Cluster	The Average Cluster purity for the (1) mutant residue, (2) for the two
Purity	following, and (3) the two previous position in the sequence. This measure is
·	used in general to evaluate the classification performances of clustering
	algorithms. It is defined as follows:
	$1 \sum_{n=1}^{N_p} \sum_{i=1}^{N_c} n_{ii}^2$
	$ACP = \frac{1}{N} \sum_{i=1}^{N_p} \sum_{i=1}^{N_c} \frac{n_{ij}^2}{n_i}$
	$i \mathbf{v}_{i=1} j=1 n_i$
	where N is the number of electors that we are considering N is the number
	where N_p is the number of clusters that we are considering, N_c is the number of classes in our dataset, n_i is the size of the <i>i</i> -th cluster, n_{ij} is the amount of
	elements of class j that belong to cluster i and N is the number of samples.
	Clearly, in RING this is used to evaluate the different distribution of amino-
	acids in two sequence positions.
Torsion angle	The torsion angle potential as defined in [23] for the (1) mutant residue, (2)
potential (TAP)	for the following, and (3) the previous position in the sequence.
FRST potential	The overall FRST potential defined in [24] for (1) mutant residue, (2) for the
r - r	following, and (3) the previous position in the sequence.
QMEAN potentials	The nine potentials defined in [25] for the (1) mutant residue, (2) for the
C	following, and (3) the previous position in the sequence:
	• all atom pairwise energy window (two windows size)
	• all atom pairwise energy window considering the secondary structure
	(two windows size)
	• C-beta pairwise energy window
	• C-beta pairwise energy window considering the secondary structure
	Torsion energy window
	Combined torsion energy window
	C-beta solvation energy window

	QMEAN is a well-known tool used for protein modeling assessment. All its potentials are used in our context to evaluate the geometrical aspects of a protein structure.
Network centralities	Seven different node centralities for the (1) mutant residue, (2) for the following, and (3) the previous position in the sequence. Basically, all these measures evaluate either the localization of the node in the network (if it is in the neighborhood or in the center) or the importance of the node for the connectivity of the graph:
	 node eccentricity clustering coefficient neighborhood connectivity stress centrality closeness centrality betweenness centrality node radiality
	All those measures are defined in [NetworkAnalyzer]. They are computed for all the sub-networks produced by RING, which distinguish:
	 hydrogen bond network inter-atomic contact network pi-cation interaction network pi-pi interaction network ionic interaction network disulfide interaction network main chain-main chain interactions main chain-side chain interactions side chain-side chain interactions the union of all networks
PH and temperature	The context where the mutation should be evaluated
÷	
Length	The length of the protein

 Table S1. Description of the features used in NeEMO.

Figure S2. Regression of the experimental data on NeEMO different neural network.

helices		i	r				
Method	Mutations	Method	NeEMO	Method	NeEMO	Method	NeEMO
Auto-Mute	426	0.737	0.591	0.712	0.58	0.539	0.408
I-Mutant 2.0	804	0.716	0.658	0.672	0.625	0.519	0.446
I-Mutant 3.0	763	0.616	0.664	0.653	0.634	0.461	0.453
MuPro	857	0.658	0.644	0.612	0.611	0.455	0.435
PoPMuSiC 2.0	858	0.614	0.645	0.627	0.612	0.451	0.436

Table S2. Correlation measures computed on mutations occurring only inhelices on the 10 foldcross-validation training dataset.

strands		Ì	R				
Method	Mutations	Method	NeEMO	Method	NeEMO	Method	NeEMO
Auto-Mute	359	0.655	0.705	0.666	0.691	0.482	0.51
I-Mutant 2.0	662	0.63	0.731	0.647	0.692	0.469	0.511
I-Mutant 3.0	687	0.706	0.729	0.675	0.707	0.467	0.523
MuPro	784	0.608	0.716	0.618	0.687	0.438	0.506
PoPMuSiC 2.0	784	0.68	0.716	0.663	0.687	0.487	0.506

Table S3. Correlation measures computed on mutations occurring only instrands on the 10 foldcross-validation training dataset.

Coil		i	r				
Method	Mutations	Method	NeEMO	Method	NeEMO	Method	NeEMO
Auto-Mute	359	0.651	0.565	0.644	0.573	0.487	0.404
I-Mutant 2.0	705	0.535	0.594	0.522	0.601	0.394	0.426
I-Mutant 3.0	662	0.489	0.587	0.550	0.59	0.385	0.42
MuPro	757	0.541	0.581	0.466	0.588	0.344	0.418
PoPMuSiC 2.0	757	0.508	0.581	0.517	0.588	0.365	0.418

Table S4. Correlation measures computed on mutations occurring only in coil conformation on the 10 fold cross-validation training dataset.

Exposed (RSA >25%)		r					
Method	Mutations	Method	NeEMO	Method	NeEMO	Method	NeEMO
Auto-Mute	495	0.689	0.588	0.672	0.567	0.506	0.404
I-Mutant 2.0	980	0.637	0.614	0.564	0.561	0.426	0.399
I-Mutant 3.0	925	0.553	0.617	0.618	0.556	0.430	0.395
MuPro	1039	0.620	0.603	0.527	0.551	0.394	0.391
PoPMuSiC 2.0	1039	0.571	0.603	0.572	0.551	0.405	0.391

Table S5. Correlation measures computed on mutations occurring only on exposed residues (e, RSA > 25%) on the 10 fold cross-validation training dataset.

itations 649	Method 0.652	NeEMO 0.609	Method	NeEMO	Method	NeEMO
649	0.652	0.609	0.653	0 591		
				0.391	0.474	0.421
1191	0.588	0.647	0.583	0.616	0.428	0.442
1187	0.630	0.653	0.611	0.635	0.424	0.458
1359	0.579	0.638	0.567	0.614	0.405	0.440
	0 581	0.638	0.548	0.614	0.393	0.441
		1359 0.579 1360 0.581				

Table S6. Correlation measures computed on mutations occurring only on buried residues (b, RSA Ö25%) on the 10 fold cross-validation training dataset.